Martensite/ferrite (M/F) interface damage plays a critical role in controlling failure of dual-phase (DP) steels and is commonly understood to originate from the large phase contrast between martensite and ferrite. This however conflicts with a few, recent observations, showing that considerable M/F interface damage initiation is often accompanied by apparent martensite island plasticity and weak M/F strain partitioning. In fact, martensite has a complex hierarchical structure which induces a strongly heterogeneous and orientation-dependent plastic response. Depending on the local stress state, (lath) martensite is presumed to be hard to deform based on common understanding. However, when favourably oriented, substructure boundary sliding c...