We investigate the prospects of combining a standard momentum space approach for ultracold three-body scattering with efficient coordinate space schemes to solve the underlying two-body problem. In many of those schemes the two-body problem is numerically restricted up to a finite interparticle distance rb. We analyze effects of this two-body restriction on the two- and three-body level using pairwise square-well potentials that allow for analytic two-body solutions and more realistic Lennard-Jones van der Waals potentials to model atomic interactions. We find that the two-body t-operator converges exponentially in rb for the square-well interaction. Setting rb to 2000 times the range of the interaction, the three-body recombination rate ca...