Virus capsids, i.e., viruses devoid of their genetic material, are suitable nanocarriers for biomedical applications such as drug delivery and diagnostic imaging. For this purpose, the reliable encapsulation of cargo in such a protein nanocage is crucial, which can be accomplished by the covalent attachment of the compounds of interest to the protein domains positioned at the interior of the cage. This approach is particularly valid for the capsid proteins of the cowpea chlorotic mottle virus (CCMV), which have their N-termini located at the inside of the capsid structure. Here, we examined several site-selective modification methods for covalent attachment and encapsulation of cargo at the N-terminus of the CCMV protein. Initially, we expl...