We study dynamic conflict-free colorings in the plane, where the goal is to maintain a conflict-free coloring (CF-coloring for short) under insertions and deletions. - First we consider CF-colorings of a set S of unit squares with respect to points. Our method maintains a CF-coloring that uses O(log n) colors at any time, where n is the current number of squares in S, at the cost of only O(log n) recolorings per insertion or deletion We generalize the method to rectangles whose sides have lengths in the range [1, c], where c is a fixed constant. Here the number of used colors becomes O(log^2 n). The method also extends to arbitrary rectangles whose coordinates come from a fixed universe of size N, yielding O(log^2 N log^2 n) colors. The num...