This paper investigates preemptive spin-based global resource sharing protocols for resource-constrained real-time embedded multi-core systems based on partitioned fixed-priority preemptive scheduling. We present preemptive spin-based protocols that feature (i) an increased schedulability ratio of task sets and reduced response jitter of tasks compared to the classical non-preemptive spin-based protocol, (ii) similar memory requirements for the administration of waiting tasks as for the non-preemptive protocol whilst only causing (iii) a minimal increase of the minimal number of required stacks per core from one to at most two, and (iv) strong progress guarantees to tasks. We complement these protocols with a unified worst-case response tim...