We consider first passage percolation on the configuration model with n vertices, and general independent and identically distributed edge weights assumed to have a density. Assuming that the degree distribution satisfies a uniform X2 logX-condition, we analyze the asymptotic distribution for the minimal weight path between a pair of typical vertices, as well the number of edges on this path namely the hopcount. Writing Ln for the weight of the optimal path, we show that Ln- (log n)/αn converges to a limiting random variable, for some sequence αn. Furthermore, the hopcount satisfies a central limit theorem (CLT) with asymptotic mean and variance of order log n. The sequence αn and the norming constants for the CLT are expressible in terms o...