Stochastic simulation is a commonly used tool by practitioners for evaluating the performance of inventory policies. A typical inventory simulation starts with the determination of the best-fit input models (e.g. probability distribution function of the demand random variable) and then obtains a performance measure estimate under these input models. However, this sequential approach ignores the uncertainty around the input models, leading to inaccurate performance measures, especially when there is limited historical input data. In this paper, we take an alternative approach and propose a simulation replication algorithm that jointly estimates the input models and the performance measure, leading to a credible interval for the performance m...