For the day-ahead density forecasting of electricity load, this paper proposes the combination of the autoregressive moving average (ARMA) model and the generalized autoregressive conditional heteroskedasticity (GARCH) model, with both of them admitting exogenous inputs. This composite structure on the conditional mean and variance is referred to as the ARMAX-GARCHX model. As an alternative to its estimation by means of log-likelihood maximization, approaches based on iterative least-squares (ILS) and nonlinear least-squares (NLS) are considered. Apart from the ARMAX-GARCHX model, quantile regression models (QRMs) are also tested in forecasting where a wide range of quantiles are separately modeled to approximate a density. Phase currents o...