Fibrillating metal-elastomer interfacial systems, typically used in stretchable electronics applications, can exhibit remarkably high values for the interface fracture toughness. Consequently, a huge gap exists between the low adhesion energy at the microscopic scale and the measured macroscopic work of separation. This contribution aims to close this energy gap by unravelling the underlying dissipative mechanisms through a multi-scale approach. The first scale transition was established in earlier work, and concerned the formation and deformation of a single fibril at the copper-rubber interface up to failure. It was shown that the obtained work of separation was significantly larger thanthe small-scale interface adhesion, yet a decade too...