We continue our study of Gibbs-non-Gibbs dynamical transitions. In the present paper we consider a system of Ising spins on a large discrete torus with a Kac-type interaction subject to an independent spin-¿ip dynamics (in¿nite-temperature Glauber dynamics). We show that, in accordance with the program outlined in [11], in the thermodynamic limit Gibbs-non-Gibbs dynamical transitions are equivalent to bifurcations in the set of global minima of the large-deviation rate function for the trajectories of the empirical density conditional on their endpoint. More precisely, the time-evolved measure is non-Gibbs if and only if this set is not a singleton for some value of the endpoint. A partial description of the possible scenarios of bifurcatio...