In the setting of Carnot groups, we are concerned with the rectifiability problem for subsets that have finite sub-Riemannian perimeter. We introduce a new notion of rectifiability that is, possibly, weaker than the one introduced by Franchi, Serapioni, and Serra Cassano. Specifically, we consider subsets Γ that, in a way similar to intrinsic Lipschitz graphs, have a cone property: there exists an open dilation-invariant subset C whose translations by elements in Γ do not intersect Γ . However, a priori the cone C may not have any horizontal directions in its interior. In every Carnot group, we prove that the reduced boundary of every finite-perimeter subset can be covered by countably many subsets that have such a cone property. The cones ...
In this paper we provide two different characterizations of sets with finite perimeter and functions...
In the setting of two-step Carnot groups we show a "cone property" forhorizontally convex sets. Name...
In Chapter 1 we present some recent results of Geometric Measure Theory in doubling metric measure s...
In the setting of Carnot groups, we are concerned with the rectifiability problem for subsets that h...
We consider sets of locally finite perimeter in Carnot groups. We show that if E is a set of locally...
We consider sets of locally finite perimeter in Carnot groups. We show that if E is a set of locally...
In this talk we discuss two problems concerning “rectifiability” in sub-Riemannian geometry and part...
This paper contributes to the study of sets of finite intrinsic perimeter in Carnot groups. Our inte...
summary:We study finite perimeter sets in step 2 Carnot groups. In this way we extend the classical ...
summary:We study finite perimeter sets in step 2 Carnot groups. In this way we extend the classical ...
summary:We study finite perimeter sets in step 2 Carnot groups. In this way we extend the classical ...
We introduce a notion of rectifiability modeled on Carnot groups. Precisely, we say that a subset E ...
In the Engel group with its Carnot group structure, we study subsets of locally finite subRiemannian...
In the Engel group with its Carnot group structure, we study subsets of locally finite subRiemannian...
In the Engel group with its Carnot group structure, we study subsets of locally finite subRiemannian...
In this paper we provide two different characterizations of sets with finite perimeter and functions...
In the setting of two-step Carnot groups we show a "cone property" forhorizontally convex sets. Name...
In Chapter 1 we present some recent results of Geometric Measure Theory in doubling metric measure s...
In the setting of Carnot groups, we are concerned with the rectifiability problem for subsets that h...
We consider sets of locally finite perimeter in Carnot groups. We show that if E is a set of locally...
We consider sets of locally finite perimeter in Carnot groups. We show that if E is a set of locally...
In this talk we discuss two problems concerning “rectifiability” in sub-Riemannian geometry and part...
This paper contributes to the study of sets of finite intrinsic perimeter in Carnot groups. Our inte...
summary:We study finite perimeter sets in step 2 Carnot groups. In this way we extend the classical ...
summary:We study finite perimeter sets in step 2 Carnot groups. In this way we extend the classical ...
summary:We study finite perimeter sets in step 2 Carnot groups. In this way we extend the classical ...
We introduce a notion of rectifiability modeled on Carnot groups. Precisely, we say that a subset E ...
In the Engel group with its Carnot group structure, we study subsets of locally finite subRiemannian...
In the Engel group with its Carnot group structure, we study subsets of locally finite subRiemannian...
In the Engel group with its Carnot group structure, we study subsets of locally finite subRiemannian...
In this paper we provide two different characterizations of sets with finite perimeter and functions...
In the setting of two-step Carnot groups we show a "cone property" forhorizontally convex sets. Name...
In Chapter 1 we present some recent results of Geometric Measure Theory in doubling metric measure s...