The adoption of High-Level Synthesis (HLS) tools has significantly reduced accelerator design time. A complex scaling problem that remains is the data transfer bottleneck. To scale-up performance accelerators require huge amounts of data, and are often limited by interconnect resources. In addition, the energy spent by the accelerator is often dominated by the transfer of data, either in the form of memory references or data movement on interconnect. In this paper we drastically reduce accelerator communication by exploration of computation reordering and local buffer usage. Consequently, we present a new analytical methodology to optimize nested loops for inter-tile data reuse with loop transformations like interchange and tiling. We focus...