Increasing performance demands in control applications necessitate accurate modeling of complex systems for control. The aim of this chapter is to develop a new system identification algorithm that delivers models that are suitable for subsequent robust control design and can be reliably applied to complex systems. To achieve this, an identification algorithm is developed that delivers a system model in terms of recently developed coprime factorizations and thereby extends classical iterative procedures to the closed-loop case. These coprime factorizations have important advantages for uncertainty modeling and robust controller synthesis of complex systems. A numerically optimal implementation is presented that relies on orthonormal polynom...