There is a need to further improve driver comfort in commercial vehicles. The variable geometry active suspension offers an interesting option to achieve this in an energy efficient way. However, the optimal control strategy and the overal performance potential remains unclear. The aim of this paper is to quantify the level of performance improvement that can theoretically be obtained by replacing a conventional air sprung cabin suspension design with a variable geometry active suspension. Furthermore, the difference between the use of a linear quadratic (LQ) optimal controller and a classic skyhook controller is investigated. Hereto, an elementary variable geometry actuator model and experimentally validated four degrees of freedom quarter...