Microfluidic analysis devices are becoming more common as a tool for clinical analysis. In these devices fluid transport and mixing of multiple components are common tasks. A possible way of achieving these tasks can be found in nature, where small hairs, named cilia, are found on micro-organisms and surfaces. These hairs move the surrounding fluid, or move the micro-organism through the fluid. As in micro-fluidics, the generated flows are inertialess in general. By mimicking natural cilia, several successful microfluidic actuators for pumping and mixing have been developed recently [1–8]. In order to understand the working principles of these devices and improve their design, a numerical model is presented in this thesis. With this model, ...