Axial velocities were measured in an enlarged, two-dimensional, rigid model of the carotid artery bifurcation by means of a laser-Doppler anemometer, under both steady and unsteady flow conditions. Also a numerical model was developed, based on the finite element approximation of the Navier-Stokes and continuity equations. From this study it appeared that the numerically predicted velocities agree well with the experimentally obtained values. Besides, the bifurcation hardly influenced the upstream flow in the main branch (common carotid artery), high velocity gradients were observed at the divider walls of the daughter branches (internal and external carotid arteries) and large zones with reversed flow were present near the nondivider walls...