This paper presents an empirical study of the convergence characteristics of augmented Lagrangian coordination (ALC) for solving multi-modal optimization problems in a distributed fashion. A number of test problems that do not satisfy all assumptions of the convergence proof for ALC are selected to demonstrate the convergence characteristics of ALC algorithms. When only a local search is employed at the subproblems, local solutions to the original problem are often attained. When a global search is performed at subproblems, global solutions to the original, non-decomposed problem are found for many of the examples. Although these findings are promising, ALC with a global subproblem search may yield only local solutions in the case of non-co...