Batch process industries are characterized by complex precedence relationships between operations, which renders the estimation of an acceptable workload very difficult. A detailed schedule based model can be used for this purpose, but for large problems this may require a prohibitive large amount of computation time. We propose a regression based model to estimate the makespan of a set of jobs. We extend earlier work based on deterministic processing times by considering Erlang-distributed processing times in our model. This regression-based model is used to support customer order acceptance. Three order acceptance policies are compared by means of simulation experiments: a scheduling policy, a workload policy and a regression policy. The ...