We address the problem of efficient data gathering in a wireless network through multi-hop communication. We focus on the objective of minimizing the maximum flow time of a data packet. We prove that no polynomial time algorithm for this problem can have approximation ratio less than $Omega(m^{1/3)$ when $m$ packets have to be transmitted, unless $P = NP$. We then use resource augmentation to assess the performance of a FIFO-like strategy. We prove that this strategy is 5-speed optimal, i.e., its cost remains within the optimal cost if we allow the algorithm to transmit data at a speed 5 times higher than that of the optimal solution we compare to