A theoretical approach is presented that accounts for the influence of high pressure background gases on the vapor-to-liquid nucleation process. The key idea is to treat the carrier gas pressure as a perturbation parameter that modifies the properties of the nucleating substance. Two important mechanisms are identified in this respect: With increasing carrier gas pressure, the saturated vapor density tends to increase (enhancement effect), whereas the surface tension generally decreases. Several routes to obtain data for these pressure effects are outlined, in particular for the vapor–gas mixtures that have been studied experimentally. (The results of these expansion wave tube experiments are presented in Paper II of this paper [J. Chem. Ph...