In this paper we consider the clustering coefficient, and clustering function in a random graph model proposed by Krioukov et al. in 2010. In this model, nodes are chosen randomly inside a disk in the hyperbolic plane and two nodes are connected if they are at most at a certain hyperbolic distance from each other. It has been previously shown that this model has various properties associated with complex networks, including a power-law degree distribution, “short distances” and a nonvanishing clustering coefficient. The model is specified using three parameters: The number of nodes n, which we think of as going to infinity, and α; v > 0, which we think of as constant. Roughly speaking, the parameter γ controls the power law exponent of t...