We perform direct numerical simulations of rotating Rayleigh-Bénard convection (RRBC) of fluids with low (Pr=0.1) and high (Pr≈5) Prandtl numbers in a horizontally periodic layer with no-slip bottom and top boundaries. No-slip boundaries are known to actively promote the formation of plumelike vertical disturbances, through so-called Ekman pumping, that control the ambient flow at sufficiently high rotation rates. At both Prandtl numbers, we demonstrate the presence of competing large-scale vortices (LSVs) in the bulk. Strong buoyant forcing and rotation foster the quasi-two-dimensional turbulent state of the flow that leads to the upscale transfer of kinetic energy that forms the domain-filling LSV condensate. The Ekman plumes from the bou...