The interactive thermal wall model is applied in three-dimensional molecular dynamics simulations to investigate the combined effect of the wall force field, the wall stiffness, the wall atom mass and the wall/gas interaction potential strength on the heat transfer characteristics of static rarefied argon gas within a nanochannel. By increasing the wall stiffness, a reduction in the heat flux through the gas medium occurs which leads to a higher temperature jump. As the wall atom mass is increased up to twice the argon atom mass, the heat flux is enhanced notably and a minimum temperature jump can be found at this point. Further increase in the wall atom mass results in reducing the heat flux and consequently increasing the temperature jump...