Quantitative description of gas-solid momentum transfer is of fundamental importance to predict the behavior of suspensions of sedimenting or fluidized particles. It is usually characterized by the dependence of normalized average drag force Fd on mean Reynolds number (Re) and solids volume fraction (φ). In this work we report detailed direct numerical simulation (DNS) results of interphase momentum transfer in flows past fixed assemblies of monodisperse spheres using an iterative immersed boundary method (IBM). A methodology has been applied for all the IBM simulations, which was validated to obtain highly accurate results of drag force and flow velocity field at relatively low computational cost. Simulations were performed for Re ranging ...