For even k ϵ N, the matchings connectivity matrix Mk is a binary matrix indexed by perfect matchings on k vertices; the entry at (M;M) is 1 i M [ M0 forms a single cycle. Cygan et al. (STOC 2013) showed that the rank of Mk over Z2 is ( p ϵ k ) and used this to give an O ((2 + p 2)pw) time algorithm for counting Hamiltonian cycles modulo ϵ on graphs of pathwidth pw, carrying over to the decision problem via witness isolation. The same authors complemented their algorithm by an essentially tight lower bound under the Strong Exponential Time Hypothesis (SETH). This bound crucially relied on a large permutation submatrix withinMk, which enabled a \pattern propagation" commonly used in previous related lower bounds, as initiated by Lokshtanov et...