In this paper, a novel distributed consensus control approach for vehicular platooning systems is proposed. In formalizing the underlying consensus problem, a realistic vehicle dynamics model is considered and a velocity-dependent spacing-policy between two consecutive vehicles is realized. For a generic communication topology, conditions for asymptotic platoon stability are proposed. As a particular case, these results allow to consider bi-directional vehicle interaction, which improves the coherence between the vehicles in the platoon. The theoretical results are experimentally validated using a three-vehicle platoon consisting of (longitudinally) automated vehicles equipped with wireless inter-vehicle communication and radar-based sensin...