Many modern advanced electromagnetic devices, e.g. motors and actuators, use permanent magnets as a source of magnetic fields. The strong and reliable magnetic fields of today’s rare-earth permanent magnets increase their force density. Most of them are based on the interaction between the magnetic field of permanent magnets and current-carrying coils. However, magnetic couplings or electromagnetic vibration isolation systems rely on the strong and position-dependent passive force between permanent magnets instead of an active force resulting from a current. An accurate, noise-free computational description of these interactions is therefore essential for future developments of these high-performance devices. The considered configurations a...