This paper presents a novel transient computational homogenization procedure that is suitable for the modelling of the evolution in space and in time of materials with non-steady state microstructure, such as metamaterials. This transient scheme is an extension of the classical (first-order) computational homogenization framework. It is based on an enriched description of the micro–macro kinematics by allowing large spatial fluctuations of the microscopic displacement field in contrast to the macroscopic displacement field, as a result of possible transient phenomena. From the microstructural analysis, the macroscopic stress and the macroscopic linear momentum are obtained from an extended Hill–Mandel macrohomogeneity condition. In particul...