A novel method for automatic quality assessment of medical image registration is presented. The method is based on supervised learning of local alignment patterns, which are captured by statistical image features at distinctive landmark points. A two-stage classifier cascade, employing an optimal multi-feature model, classifies local alignments into three quality categories: correct, poor or wrong alignment. We establish a reference registration error set as basis for training and testing of the method. It consists of image registrations obtained from different non-rigid registration algorithms and manually established point correspondences of automatically determined landmarks. We employ a set of different classifiers and evaluate the perf...