This book aims to bridge the gap between Linear Parameter-Varying (LPV) modeling and control by investigating fundamental questions of modeling and identification. It explores missing details of LPV system theory that have hindered the formulation of a well established identification framework. By proposing a unified LPV system theory, based on a behavioral approach, the concepts of representations, equivalence transformations and means to compare model structures are re-established, giving a solid basis for an identification theory. It is also explored when and how first-principle nonlinear models can be efficiently converted to LPV descriptions detailing possible pitfalls. Building on well-founded system theoretical concepts, the classica...