The two-dimensional bin packing problem is a generalization of the classical bin packing problem and is defined as follows. Given a collection of rectangles specified by their width and height, pack these into a minimum number of square bins of unit size. Recently, the problem was proved to be APX-hard even in the asymptotic case, i.e. when the optimum solutions require a large number of bins [N. Bansal, J. Correa, C. Kenyon, M. Sviridenko, Bin packing in multiple dimensions: Inapproximability results and approximation schemes, Math. Oper. Res. 31 (1) (2006) 31–49]. On the positive side, there exists a polynomial time algorithm that uses OPT bins whose sides have length (1+), where OPT denotes the number of unit sized bins used by the optim...