Measuring and predicting the user’s Quality of Experience (QoE) of a multimedia stream is the first step towards improving and optimizing the provision of mobile streaming services. This enables us to better understand how Quality of Service (QoS) parameters affect service quality, as it is actually perceived by the end user. Over the last years this goal has been pursued by means of subjective tests and through the analysis of the user’s feedback. Existing statistical techniques have lead to poor accuracy (order of 70%) and inability to evolve prediction models with the system’s dynamics. In this paper, we propose a novel approach for building accurate and adaptive QoE prediction models using Machine Learning classification algorithms, tra...