In fuzzy rule-based models acquired from numerical data, redundancy may be present in the form of similar fuzzy sets that represent compatible concepts. This results in an unnecessarily complex and less transparent linguistic description of the system. By using a measure of similarity, a rule base simplification method is proposed that reduces the number of fuzzy sets in the model. Similar fuzzy sets are merged to create a common fuzzy set to replace them in the rule base. If the redundancy in the model is high, merging similar fuzzy sets might result in equal rules that also can be merged, thereby reducing the number of rules as well. The simplified rule base is computationally more efficient and linguistically more tractable. The approach...
Fuzzy rule base simplification is used to reduce the complexity of fuzzy models identified from the ...
Fuzzy rule base simplification is used to reduce the complexity of fuzzy models identified from the ...
Fuzzy rule base simplification is used to reduce the complexity of fuzzy models identified from the ...
In fuzzy rule-based models acquired from numerical data, redundancy may be present in the form of si...
In fuzzy rule-based models acquired from numerical data, redundancy may be present in the form of si...
In fuzzy rule-based models acquired from numerical data, redundancy may be present in the form of si...
In fuzzy rule-based models acquired from numerical data, redundancy may be present in the form of si...
In fuzzy rule-based models acquired from numerical data, redundancy may be present in the form of si...
Abstract—In fuzzy rule-based models acquired from numerical data, redundancy may be present in the f...
In fuzzy rule-based models acquired from numerical data, redundancy may be present in the form of si...
International audienceDriven by the growing complexity of real-world systems, current trends in fuzz...
Due to its high performance and comprehensibility, fuzzy modelling is becoming more and more popular...
Fuzzy rule base simplification is used to reduce the complexity of fuzzy models identified from the ...
Fuzzy rule base simplification is used to reduce the complexity of fuzzy models identified from the ...
AbstractThe two most important models of inferencing in approximate reasoning with fuzzy sets are Za...
Fuzzy rule base simplification is used to reduce the complexity of fuzzy models identified from the ...
Fuzzy rule base simplification is used to reduce the complexity of fuzzy models identified from the ...
Fuzzy rule base simplification is used to reduce the complexity of fuzzy models identified from the ...
In fuzzy rule-based models acquired from numerical data, redundancy may be present in the form of si...
In fuzzy rule-based models acquired from numerical data, redundancy may be present in the form of si...
In fuzzy rule-based models acquired from numerical data, redundancy may be present in the form of si...
In fuzzy rule-based models acquired from numerical data, redundancy may be present in the form of si...
In fuzzy rule-based models acquired from numerical data, redundancy may be present in the form of si...
Abstract—In fuzzy rule-based models acquired from numerical data, redundancy may be present in the f...
In fuzzy rule-based models acquired from numerical data, redundancy may be present in the form of si...
International audienceDriven by the growing complexity of real-world systems, current trends in fuzz...
Due to its high performance and comprehensibility, fuzzy modelling is becoming more and more popular...
Fuzzy rule base simplification is used to reduce the complexity of fuzzy models identified from the ...
Fuzzy rule base simplification is used to reduce the complexity of fuzzy models identified from the ...
AbstractThe two most important models of inferencing in approximate reasoning with fuzzy sets are Za...
Fuzzy rule base simplification is used to reduce the complexity of fuzzy models identified from the ...
Fuzzy rule base simplification is used to reduce the complexity of fuzzy models identified from the ...
Fuzzy rule base simplification is used to reduce the complexity of fuzzy models identified from the ...