Many image processing problems require the enhancement of crossing elongated structures. These problems cannot easily be solved by commonly used coherence-enhancing diffusion methods. Therefore, we propose a method for coherence-enhancing diffusion on the invertible orientation score of a 2D image. In an orientation score, the local orientation is represented by an additional third dimension, ensuring that crossing elongated structures are separated from each other. We consider orientation scores as functions on the Euclidean motion group, and use the group structure to apply left-invariant diffusion equations on orientation scores. We describe how we can calculate regularized left-invariant derivatives, and use the Hessian to estimate thre...