Spectroscopic and real time optical second-harmonic generation (SHG) has been applied to gain insight into the surface and interface processes during low-energy (70-1000 eV) Ar+-ion bombardment of H terminated Si(100). The Ar+-ion bombardment of the cryst. silicon (c-Si), which creates a layer of amorphous silicon (a-Si), has been studied in the SH photon energy range of 2.7-3.5 eV. The time-resolved SHG signal has been obsd. to increase with an order of magnitude upon ion bombardment. Spectroscopic SHG during ion bombardment and after subsequent XeF2 dosing indicates that the SHG signal has both a contribution generated at the buried interface between the a-Si and the c-Si and an addnl. contribution originating from the a-Si surface. By se...