Several decomposition methods have been proposed for the distributed optimal design of quasi-separable problems encountered in Multidisciplinary Design Optimization (MDO). Some of these methods are known to have numerical convergence difficulties that can be explained theoretically. We propose a new decomposition algorithm for quasi-separable MDO problems. In particular, we propose a decomposed problem formulation based on the augmented Lagrangian penalty function and the block coordinate descent algorithm. The proposed solution algorithm consists of inner and outer loops. In the outer loop, the augmented Lagrangian penalty parameters are updated. In the inner loop, our method alternates between solving an optimization master problem, and s...
In this paper we study decomposition methods based on separable approximations for mini-mizing the a...
Multidisciplinary design optimization (MDO) problems are engineering design problems that require th...
Abstract We propose a novel distributed method for convex optimization problems with a certain separ...
Several decomposition methods have been proposed for the distributed optimal design of quasi-separab...
Several decomposition methods have been proposed for the distributed optimal design of quasiseparabl...
Quite a number of coordination methods have been proposed for the distributed optimal design of larg...
Quite a number of coordination methods have been proposed for the distributed optimal design of larg...
Quite a number of coordination methods have been proposed for the distributed optimal design of larg...
The formulation flexibility and the numerical performance of the augmented Lagrangian coordination m...
Having previously developed a differential geometry framework for analyzing and conceptualizing Mult...
The numerical performance and formulation flexibility of an augmented Lagrangian coordination method...
Traditional approaches to MDO problem decomposition have shown poor performance when solving problem...
Augmented Lagrangian coordination (ALC) is a provably convergent coordination method for multidiscip...
The numerical performance and formulation flexibility of an augmented Lagrangian coordination method...
This paper presents an empirical study of the convergence characteristics of augmented Lagrangian co...
In this paper we study decomposition methods based on separable approximations for mini-mizing the a...
Multidisciplinary design optimization (MDO) problems are engineering design problems that require th...
Abstract We propose a novel distributed method for convex optimization problems with a certain separ...
Several decomposition methods have been proposed for the distributed optimal design of quasi-separab...
Several decomposition methods have been proposed for the distributed optimal design of quasiseparabl...
Quite a number of coordination methods have been proposed for the distributed optimal design of larg...
Quite a number of coordination methods have been proposed for the distributed optimal design of larg...
Quite a number of coordination methods have been proposed for the distributed optimal design of larg...
The formulation flexibility and the numerical performance of the augmented Lagrangian coordination m...
Having previously developed a differential geometry framework for analyzing and conceptualizing Mult...
The numerical performance and formulation flexibility of an augmented Lagrangian coordination method...
Traditional approaches to MDO problem decomposition have shown poor performance when solving problem...
Augmented Lagrangian coordination (ALC) is a provably convergent coordination method for multidiscip...
The numerical performance and formulation flexibility of an augmented Lagrangian coordination method...
This paper presents an empirical study of the convergence characteristics of augmented Lagrangian co...
In this paper we study decomposition methods based on separable approximations for mini-mizing the a...
Multidisciplinary design optimization (MDO) problems are engineering design problems that require th...
Abstract We propose a novel distributed method for convex optimization problems with a certain separ...