Complementation, the inverse of the reduced product operation, is a technique for systematically finding minimal decompositions of abstract domains. Filé and Ranzato advanced the state of the art by introducing a simple method for computing a complement. As an application, they considered the extraction by complementation of the pair-sharing domain PS from the Jacobs and Langen's set-sharing domain SH. However, since the result of this operation was still SH, they concluded that PS was too abstract for this. Here, we show that the source of this result lies not with PS but with SH and, more precisely, with the redundant information contained in SH with respect to ground-dependencies and pair-sharing. In fact, a proper decomposition is ob...