Binary reverse engineering is used to understand and analyse programs for which the source code is unavailable. Decompilers can help, transforming opaque binaries into a more readable source code-like representation. Still, reverse engineering is difficult and costly, involving considering effort in labelling code with helpful summaries. While the automated summarisation of decompiled code can help reverse engineers understand and analyse binaries, current work mainly focuses on summarising source code, and no suitable dataset exists for this task. In this work, we extend large pre-trained language models of source code to summarise de-compiled binary functions. Further-more, we investigate the impact of input and data properties on the per...