Nano-sized carbons such as graphene and carbon nanotubes have been used as highly sensitive semiconducting materials in field effect transistor (FET) based biosensors. Extensive studies have been made for each carbon material for biosensing but only a few ventures into a comparison study. For this project, a top-gating FET design was utilized to measure the bio-analytes’ modulation of the graphene and carbon nanotubes’ conductance. The device was fabricated using a micro-molding in capillary technique (MIMIC) to form micro-patterned graphene and carbon nanotubes devices for biosensing. The dimension of the micro-pattern improves compatibility with cell biosensing and it introduces an efficient electron transport pathway for better d...