While incorporation of river sands improves the volume stability and lowers the cost of ECC, distinct multiple cracking and tensile strain-hardening behavior of the resulting river sand ECC (RS-ECC) with different strength grade were observed. This paper investigates the effects of river sand inclusion on crack propagation in RS-ECC. It concludes that crack deflection at RS/matrix interface prevails in the normal strength RS-ECC while crack penetration through RS dominates in the high strength RS-ECC. As a result, crack path in the normal strength RS-ECC is more tortuous which increases matrix fracture toughness and lead to less saturated multiple cracking and reduced tensile strain capacity. Crack branching can occur when the crack propaga...