Abstract We give a geometric interpretation for the principle of stationary action in classical Lagrangian particle mechanics. In a nutshell, the difference of the action along a path and its variation effectively “counts” the possible evolutions that “go through” the area enclosed. If the path corresponds to a possible evolution, all neighbouring evolutions will be parallel, making them tangent to the area enclosed by the path and its variation, thus yielding a stationary action. This treatment gives a full physical account of the geometry of both Hamiltonian and Lagrangian mechanics which is founded on three assumptions: determinism and reversible evolution, independence of the degrees of freedom and equivalence between kinematics and dyn...