We show that the topological Pontryagin classes are algebraically independent in the rationalised cohomology of BTop(d) for all $d \geq 4$.Comment: 17 pages, final accepted versio
We construct an Euler system associated to regular algebraic, essentially conjugate self-dual cuspid...
We introduce the intersection cohomology module of a matroid and prove that it satisfies Poincar\'e ...
We introduce the definition of De Rham logarithmic classes. We show that the De Rham class of an alg...
We determine $\pi_*(BDiff_\partial(D^{2n})) \otimes \mathbb{Q}$ for $2n \geq 6$ completely in degree...
We prove that any rational linear combination of Pontryagin numbers that does not factor through the...
We study the infinite generation in the homotopy groups of the group of diffeomorphisms of $S^1 \tim...
It is known that projective minimal models satisfy the celebrated Miyaoka-Yau inequalities. In this ...
We consider an algebraic variety X together with the choice of a subvariety Z. We show that any cohe...
We prove that the quotient of the integer homology cobordism group by the subgroup generated by the ...
We prove a topological version of abelian duality where the gauge groups are finite abelian. The the...
Let $n \geq 1$ be an odd integer. We construct an anticyclotomic Euler system for certain cuspidal a...
We give an example of a nonzero odd degree element of the classifying space of a connected Lie group...
In [Inventiones mathematicae, 184 (2011)], Vollaard and Wedhorn defined a stratification on the spec...
We define the notions of unital/counital/biunital infinitesimal anti-symmetric bialgebras and coFrob...
We point out a gap in Murre's proof of the existence of a universal regular homomorphism for codimen...
We construct an Euler system associated to regular algebraic, essentially conjugate self-dual cuspid...
We introduce the intersection cohomology module of a matroid and prove that it satisfies Poincar\'e ...
We introduce the definition of De Rham logarithmic classes. We show that the De Rham class of an alg...
We determine $\pi_*(BDiff_\partial(D^{2n})) \otimes \mathbb{Q}$ for $2n \geq 6$ completely in degree...
We prove that any rational linear combination of Pontryagin numbers that does not factor through the...
We study the infinite generation in the homotopy groups of the group of diffeomorphisms of $S^1 \tim...
It is known that projective minimal models satisfy the celebrated Miyaoka-Yau inequalities. In this ...
We consider an algebraic variety X together with the choice of a subvariety Z. We show that any cohe...
We prove that the quotient of the integer homology cobordism group by the subgroup generated by the ...
We prove a topological version of abelian duality where the gauge groups are finite abelian. The the...
Let $n \geq 1$ be an odd integer. We construct an anticyclotomic Euler system for certain cuspidal a...
We give an example of a nonzero odd degree element of the classifying space of a connected Lie group...
In [Inventiones mathematicae, 184 (2011)], Vollaard and Wedhorn defined a stratification on the spec...
We define the notions of unital/counital/biunital infinitesimal anti-symmetric bialgebras and coFrob...
We point out a gap in Murre's proof of the existence of a universal regular homomorphism for codimen...
We construct an Euler system associated to regular algebraic, essentially conjugate self-dual cuspid...
We introduce the intersection cohomology module of a matroid and prove that it satisfies Poincar\'e ...
We introduce the definition of De Rham logarithmic classes. We show that the De Rham class of an alg...