Embedded electrochemical energy storage is essential to meet the growing demand for low-power portable devices such as micro-electromechanical systems (MEMS), autonomous sensor arrays, radio-frequency identification (RFID) tags or biomedical devices. The elaboration of composite electrodes is an important lever to improve performance in terms of energy density and device durability. CVD grown SiNWs are compatible with a purely capacitive supercapacitor system, but their capacity can be improved with the addition of conducting polymers. This research presents the development of flexible nanocomposite electrodes for micro-supercapacitors based on silicon nanowires (SiNWs) and conducting polymers as PEDOT and his derivates. Conducting polymers...