Numerical simulations of the motion of a turbulent homogeneous fluid in a rectangular beta-plane ocean basin are conducted to examine the influence of lateral boundary conditions on the development of inertial circulations. Three different boundary conditions are considered. Firstly, with a condition of zero vorticity gradient normal to the boundary, inertial Fofonoff gyres, which coincide with the maximum entropy solution of statistical mechanics, develop from the release of an initial random eddy field. Secondly, under a condition of no-stress (free-slip) at the boundary, inertial gyres resembling the Fofonoff flow develop. However, in this case, the linear relationship between potential vorticity and streamfunction is not obtained. Rathe...