Designing a structure to resist earthquakes by targeting an explicit failure risk has been a key research topic over the past two decades. In this article, a risk-targeted design approach is developed for circular reinforced concrete bridge piers, based on a probabilistic optimization procedure aimed at minimising the design resisting moment at the pier base. In order to reduce the computational effort, a surrogate model is developed to describe the influence of two key design parameter (i.e., the pier diameter and the longitudinal reinforcement ratio) on the structural behaviour and performance. The proposed approach is applied in a case study for Italy for target mean annual frequencies of failure selected according to European codes usin...