With multiple possible mediators on the causal pathway from a treatment to an outcome, we consider the problem of decomposing the effects along multiple possible causal path(s) through each distinct mediator. Under a path-specific effects framework, such fine-grained decompositions necessitate stringent assumptions, such as correctly specifying the causal structure among the mediators, and no unobserved confounding among the mediators. In contrast, interventional direct and indirect effects for multiple mediators can be identified under much weaker conditions, while providing scientifically relevant causal interpretations. Nonetheless, current estimation approaches require (correctly) specifying a model for the joint mediator distribution, ...