In the present paper, a tool is proposed to optimally schedule the charging requests of a fleet of carsharing Electric Vehicles (EVs) in an urban area, to enable their participation in the Ancillary Service Market. The centralized scheduler minimizes the imbalance of an EV fleet with respect to the power commitment declared in the Day-Ahead Market, providing also tertiary reserve and power balance control to the grid. The regulation is carried out by optimizing the initial charging time of each vehicle, according to a deadline set by the carsharing operator. To this purpose, a nature-inspired optimization is adopted, implementing innovative hybridizations of the Artificial Bee Colony algorithm. The e-mobility usage is simulated through a to...