The dynamics of confined droplets in shear flow is investigated using computational and experimental techniques for a viscosity ratio of unity. Numerical calculations, using a boundary integral method (BIM) in which the Green's functions are modified to include wall effects, are quantitatively compared with the results of confined droplet experiments performed in a counter-rotating parallel plate device. For a viscosity ratio of unity, it is experimentally seen that confinement induces a sigmoidal droplet shape during shear flow. Contrary to other models, this modified BIM model is capable of predicting the correct droplet shape during startup and steady state. The model also predicts an increase in droplet deformation and more orientation ...