The stationary flow of blood in a two-dimensional model of the bifurcation of the human carotid artery is simulated numerically using a finite element method. The Reynolds number is taken as equal to 300, corresponding to the value during the end-diastolic phase of the heart cycle. As constitutive equations, the Newtonian model and the non-Newtonian power-law and Casson models are used. The chosen model parameters corresponded with blood. The flow in this geometry is determined by the branching of the artery and the existence of a reversed flow area in the internal carotid artery. From the results of this problem, we conclude that the general flow structure is not influenced by the generalized (non-) Newtonian models. However, there are dif...