We propose nonparametric methods to obtain the Probability Density Function (PDF) to assess the properties of the underlying data generating process (DGP) without imposing any assumptions on the DGP, using neural networks (NNs). The proposed NN has advantages compared to well-known parametric and nonparametric density estimators. Our approach builds on literature on cumulative distribution function (CDF) estimation using NN. We extend this literature by providing analytical derivatives of this obtained CDF. Our approach hence removes the numerical approximation error in differentiating the CDF output, leading to more accurate PDF estimates. The proposed solution applies to any NN model, i.e., for any number of hidden layers or hidden neuron...